Truth: $V \vDash \boldsymbol{\psi}$
Validity: $\vDash \boldsymbol{\psi}$
Logical Consequence: $\phi_{1}, \phi_{2}, \ldots, \phi_{\mathrm{k}} \vDash \psi$
PHIL 50 - Review (I)
Marcello Di Bello, Stanford University, Spring 2014

What We've Done So Far

Key notions

WEEK 2: Syntax and Semantics of propositional logic

WEEK 3:

Derivations in propositional logic

$$
\left[\begin{array}{ll}
\because & \text { Inductive definition of formulas } \\
\because & V \models \psi \\
\because & \models \psi \\
\because & \phi_{1}, \phi_{2}, \ldots, \phi_{\mathrm{k}} \vDash \psi
\end{array}\right.
$$

* Derivation rules
\& -4
$\because \phi_{1}, \phi_{2}, \ldots, \phi_{k} \vdash \psi$

Topics Covered in Week 2

Syntax of Propositional Logic

Ingredients of the Propositional Language

(1) Basic (atomic) statements (propositions):

$$
p, q, r, \ldots
$$

(2) Operators to build more statements:

$"$ not $\ldots "$	becomes	$\neg \ldots$
$" \ldots$ and $\ldots "$	becomes $\ldots \wedge \ldots$	
$" \ldots$ or $\ldots "$	becomes $\ldots \vee \ldots$	
"if ... then"	becomes $\ldots \longrightarrow \ldots$	
$" \ldots$ if and only if ..."	becomes $\ldots \leftrightarrow \ldots$	

Inductive Definition of Formulas in the Language of Propositional Logic (Lp)

Base case:
$p, q, r \ldots$ are formulas of $L p$.

Inductive cases (or inductive steps):

If ϕ is a formula of $L p$, then $\neg \phi$ is a formula of $L p$
If ϕ and ψ are formulas of $L p$, then $(\phi \wedge \psi)$ is a formula of $L p$
If ϕ and ψ are formulas of $L \mathbf{p}$, then $(\phi \vee \psi)$ is a formula of $L p$
If ϕ and ψ are formulas of $L p$, then $(\phi \rightarrow \psi)$ is a formula of $L p$

Final clause:
Nothing else is a formula of $\mathbf{L p}$

Terminology

Formulas such as

$$
p, q, r, \ldots
$$

are called atomic formulas.
(They are also called atomic propositions)
Formulas of the form

$$
\begin{aligned}
& \neg \phi \\
& (\phi \wedge \psi) \\
& (\phi \vee \psi) \\
& (\phi \rightarrow \psi)
\end{aligned}
$$

are called complex or molecular formulas.

Semantics of Propositional Logic

> If the formula is atomic, check which value (1 or 0) valuation \mathbf{V} assigns to the atomic formula in question.

If the formula is complex, then the valuation V will assign a unique value (1 or 0) to the formula according to the truth tables for \neg, Λ, \vee, and \rightarrow

Truth Tables for the Connectives

φ	\rightarrow	ψ
1	$\mathbf{1}$	1
1	$\mathbf{0}$	0
0	$\mathbf{1}$	1
0	$\mathbf{1}$	0

Notation and Terminology

$\mathrm{V}(\psi)=1$ iff $\mathrm{V} \vDash \psi$ iff ψ is true relative to V iff V makes ψ true
$\mathrm{V}(\psi)=0$ iff $\mathrm{V} \nLeftarrow \psi$ iff ψ is false relative to V iff V makes ψ false

NB: The expressions separated by iff are equivalent to one another. So, e.g., writing " $V(\psi)=1$ " or " $V \vDash \psi$ " or "V makes ψ true" is the same.

Validity: $\vDash \Psi$

$\vDash \psi$ iff all valuations V 's make ψ true

Examples

ϕ	\vee	\neg	ϕ	\neg	$(\phi$	\wedge	\neg	$\phi)$
1	1	0	1					
0	1	0	$\left(\begin{array}{l}1 \\ 1\end{array}\right.$	1	0	0	1	
1	0	0	1	0				

Logical Consequence: $\phi_{1}, \phi_{2}, \ldots \phi_{\mathrm{k}} \vDash \psi$

$\phi_{1}, \phi_{2}, \ldots, \phi_{\mathrm{k}} \vDash \psi$
iff all valuations V^{\prime} s that make $\phi_{1}, \phi_{2}, \ldots, \phi_{\mathrm{k}}$ true make ψ true iff for all V^{\prime} s [if V makes $\phi_{1}, \phi_{2}, \ldots, \phi_{k}$ true, then V makes ψ true]

NB: Logical
consequence is expressed as an if-then statement, so whenever the antecedent is false, logical consequence will hold
vacuously

Checking whether $\phi_{1}, \phi_{2}, \ldots \phi_{\mathrm{k}} \vDash \psi$

(1) Select all valuations V's which make $\phi_{1}, \phi_{2}, \ldots, \phi_{\mathrm{k}}$ all true.
(2) Check whether those valuations V's which you have selected in (1) are such that they all make ψ true.

If YES, then $\phi_{1}, \phi_{2}, \ldots, \phi_{\mathbf{k}} \vDash \psi$
If $N O$, then $\phi_{1}, \phi_{2}, \ldots, \phi_{k} \not \approx \psi$

NB: If no V can make $\phi_{1}, \phi_{2}, \ldots, \phi_{\mathrm{k}}$ all true, then $\phi_{1}, \phi_{2}, \ldots, \phi_{\mathrm{k}} \vDash \psi$
will hold vacuously

Checking that $\neg \mathrm{q}, \mathrm{p} \rightarrow \mathrm{q} \vDash \neg \mathrm{p}$

We only need to check the last line of the table because this is where $\neg q, p \rightarrow q$ are both true.

Checking that $\neg \mathrm{p}, \mathrm{p} \rightarrow \mathrm{q} \not \vDash \neg \mathrm{q}$

$\neg \mathrm{p}$	$(\mathrm{p}$	\rightarrow	$\mathrm{q})$		$\neg \mathrm{q}$
0	1	1	1		0
0	1	0	0		1
1	0	1	1		0
	0	1	0		1

Not all valuations that make true both $\boldsymbol{p} \rightarrow \boldsymbol{q}$ and $\neg p$ also make true the conclusion $\neg q$.

Checking that $\neg \mathrm{p}, \mathrm{p} \vDash \neg \mathrm{p}$

$\neg \mathbf{p}$	\mathbf{p}		
0	1	$\neg \mathbf{p}$	
1	0		0
			1

There is no valuation that makes both $\neg p$ and p so $\neg p, p \vDash \neg p$ holds (vacuously)

