

Inductive definition of formulas of Lp

Truth: $V \models \psi$

 $Validity: \models \psi$

Logical Consequence: $\phi_1, \phi_2, ..., \phi_k \models \psi$

PHIL 50 - Review (I)

Marcello Di Bello, Stanford University, Spring 2014

What We've Done So Far

Key notions

WEEK 2: Syntax and Semantics of propositional logic

- Inductive definition of formulas
- $V \models \psi$
- $* \models \psi$
- \bullet $\phi_1, \phi_2, ..., \phi_k \models \psi$

WEEK 3:

Derivations in propositional logic

- Derivation rules
- $+ \vdash \psi$
- \bullet $\phi_1, \phi_2, ..., \phi_k \vdash \psi$

Topics Covered in Week 2

Syntax of Propositional Logic

Ingredients of the Propositional Language

• Basic (atomic) statements (propositions):

$$oldsymbol{p},oldsymbol{q},oldsymbol{r},\dots$$

2 Operators to build more statements:

```
"not ..."becomes\neg ..."... and ..."becomes... \wedge ..."... or ..."becomes... \vee ..."if ... then"becomes... \rightarrow ..."... if and only if ..."becomes... \leftrightarrow ...
```

Inductive Definition of Formulas in the Language of Propositional Logic (**Lp**)

Base case:

p, q, r ... are formulas of Lp.

Inductive cases (or inductive steps):

If ϕ is a formula of **Lp**, then $\neg \phi$ is a formula of **Lp**

If ϕ and ψ are formulas of **Lp**, then $(\phi \land \psi)$ is a formula of **Lp**

If ϕ and ψ are formulas of **Lp**, then $(\phi \lor \psi)$ is a formula of **Lp**

If ϕ and ψ are formulas of **Lp**, then $(\phi \rightarrow \psi)$ is a formula of **Lp**

Final clause:

Nothing else is a formula of Lp

φ and ψ are not formulas; they are schemata for formulas.

Terminology

Formulas such as

are called atomic formulas.

(They are also called atomic propositions)

Formulas of the form

$$(\phi \wedge \psi)$$

$$(\phi \lor \psi)$$

$$(\phi \rightarrow \psi)$$

are called complex or molecular formulas.

Semantics of Propositional Logic

Truth: V⊨ψ

How to determine whether a formula is true (=has value 1) or false (=has value 0) relative to a valuation V

If the formula is atomic, check which value (1 or 0) valuation V assigns to the atomic formula in question.

If the formula is complex, then the valuation V will assign a unique value (1 or 0) to the formula according to the truth tables for \neg , \wedge , \vee , and \rightarrow

Truth Tables for the Connectives

φ
1
0

^	ψ
1	1
0	0
0	1
0	0
	0

φ	V	ψ
1	1	1
1	1	0
0	1	1
0	0	0

φ	\rightarrow	ψ
1	1	1
1	0	0
0	1	1
0	1	0

Notation and Terminology

 $V(\psi)=1$ iff $V \models \psi$ iff ψ is true relative to V iff V makes ψ true

 $V(\psi)=0$ iff $V \neq \psi$ iff ψ is false relative to V iff V makes ψ false

NB: The expressions separated by *iff* are equivalent to one another. So, e.g., writing " $V(\psi)=1$ " or " $V \models \psi$ " or "V

Validity: ⊨ψ

 $\models \psi$ iff all valuations V's make ψ true

Examples

ф	V	7	ф	7	(ф	٨	7	ф)
1	$\langle 1 \rangle$	0	1			0		
	1			1	0	0	1	0

Logical Consequence: $\varphi_1, \varphi_2, ... \varphi_k \models \psi$

 $\phi_1, \phi_2, ..., \phi_k \models \psi$

iff all valuations V's that make $\phi_1, \phi_2, ..., \phi_k$ true make ψ true

iff for all V's [if V makes ϕ_1 , ϕ_2 , ..., ϕ_k true, then V makes ψ true]

NB: Logical consequence is expressed as an *if-then* statement, so whenever the antecedent is false, logical consequence will hold vacuously

Checking whether $\phi_1, \phi_2, ..., \phi_k \models \psi$

(1) Select all valuations V's which make ϕ_1 , ϕ_2 , ..., ϕ_k all true.

(2) Check whether those valuations V's which you have selected in (1) are such that they *all* make ψ true.

If YES, then $\phi_1, \phi_2, ..., \phi_k \models \psi$

If NO, then $\phi_1, \phi_2, ..., \phi_k \neq \psi$

NB: If no V can make $\phi_1, \phi_2, ..., \phi_k$ all true, then $\phi_1, \phi_2, ..., \phi_k \vDash \psi$ will hold vacuously

Checking that $\neg q, p \rightarrow q \models \neg p$

$\neg q$	(p	\rightarrow	q)	$\mid \neg p \mid$
0	1	1	1	0
1	1	0	0	0
0	0		1	1
1	0	1	0	1

We only need to check the last line of the table because this is where $\neg q$, $p \rightarrow q$ are both true.

Checking that $\neg p, p \rightarrow q \not\models \neg q$

¬р	(p	\rightarrow	q)	¬q
0	1	1	1	0
0	1	0	0	1
1	0	1	1	0
1	0	1	0	1

Not all valuations that make true both $p \rightarrow q$ and $\neg p$ also make true the conclusion $\neg q$.

Checking that $\neg p$, $p \models \neg p$

¬р	p	¬p
0	1	0
1	0	1

There is no valuation that makes both $\neg p$ and p so $\neg p$, $p \models \neg p$ holds (vacuously)